本篇关键词:进程上下文、、、

下载 >> 离线文档.鸿蒙内核源码分析(百篇博客分析.挖透鸿蒙内核).pdf

内核汇编相关篇为:

站长正在努力制作中 ... , 请客官稍等时日 , 可前往其他篇幅观看

再看下那些地方会调用 LOS_ArchMmuContextSwitch,下图一目了然。

哪些地方会切换mmu上下文

  • 第一:通过调度算法,被选中的进程的空间改变了,自然映射页表就跟着变了,需要切换mmu上下文,还是直接看代码。代码不是很多,就都贴出来了,都加了注释,不记得调度算法的可去系列篇中看 鸿蒙内核源码分析(调度机制篇),里面有详细的阐述。

    //调度算法-进程切换
    STATIC VOID OsSchedSwitchProcess(LosProcessCB *runProcess, LosProcessCB *newProcess)
    {
        if (runProcess == newProcess) {
            return;
        }
    #if (LOSCFG_KERNEL_SMP == YES)
        runProcess->processStatus = OS_PROCESS_RUNTASK_COUNT_DEC(runProcess->processStatus);
        newProcess->processStatus = OS_PROCESS_RUNTASK_COUNT_ADD(newProcess->processStatus);
    
        LOS_ASSERT(!(OS_PROCESS_GET_RUNTASK_COUNT(newProcess->processStatus) > LOSCFG_KERNEL_CORE_NUM));
        if (OS_PROCESS_GET_RUNTASK_COUNT(runProcess->processStatus) == 0) {//获取当前进程的任务数量
    #endif
            runProcess->processStatus &= ~OS_PROCESS_STATUS_RUNNING;
            if ((runProcess->threadNumber > 1) && !(runProcess->processStatus & OS_PROCESS_STATUS_READY)) {
                runProcess->processStatus |= OS_PROCESS_STATUS_PEND;
            }
    #if (LOSCFG_KERNEL_SMP == YES)
        }
    #endif
        LOS_ASSERT(!(newProcess->processStatus & OS_PROCESS_STATUS_PEND));//断言进程不是阻塞状态
        newProcess->processStatus |= OS_PROCESS_STATUS_RUNNING;//设置进程状态为运行状态
        if (OsProcessIsUserMode(newProcess)) {//用户模式下切换进程mmu上下文
            LOS_ArchMmuContextSwitch(&newProcess->vmSpace->archMmu);//新进程->虚拟空间中的->Mmu部分入参
        }
    #ifdef LOSCFG_KERNEL_CPUP
        OsProcessCycleEndStart(newProcess->processID, OS_PROCESS_GET_RUNTASK_COUNT(runProcess->processStatus) + 1);
    #endif /* LOSCFG_KERNEL_CPUP */
        OsCurrProcessSet(newProcess);//将进程置为 g_runProcess
        if ((newProcess->timeSlice == 0) && (newProcess->policy == LOS_SCHED_RR)) {//为用完时间片或初始进程分配时间片
            newProcess->timeSlice = OS_PROCESS_SCHED_RR_INTERVAL;//重新分配时间片,默认 20ms
        }
    }
    
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33

    这里再啰嗦一句,系列篇中已经说了两个上下文切换了,一个是这里的因进程切换引起的mmu上下文切换,还一个是因task切换引起的CPU的上下文切换,还能想起来吗?

  • 第二:是加载ELF文件的时候会切换mmu,一个崭新的进程诞生了,具体翻看(进程映像篇)。其余是虚拟空间回收和刷新空间的时候,这个就自己看代码去吧。mmu是如何快速的通过虚拟地址找到物理地址的呢?答案是:TLB ,注意上面还有个TTB,一个是寄存器, 一个是cache,别搞混了。

asid寄存器

asid(Adress Space ID) 进程标识符,属于CP15协处理器的C13号寄存器,ASID可用来唯一标识进程,并为进程提供地址空间保护。当TLB试图解析虚拟页号时,它确保当前运行进程的ASID与虚拟页相关的ASID相匹配。如果不匹配,那么就作为TLB失效。除了提供地址空间保护外,ASID允许TLB同时包含多个进程的条目。如果TLB不支持独立的ASID,每次选择一个页表时(例如,上下文切换时),TLB就必须被冲刷(flushed)或删除,以确保下一个进程不会使用错误的地址转换。

TLB页表中有一个bit来指明当前的entry是global(nG=0,所有process都可以访问)还是non-global(nG=1,only本process允许访问)。如果是global类型,则TLB中不会tag ASID;如果是non-global类型,则TLB会tag上ASID,且MMU在TLB中查询时需要判断这个ASID和当前进程的ASID是否一致,只有一致才证明这条entry当前process有权限访问。

看到了吗?如果每次mmu上下文切换时,把TLB全部刷新已保证TLB中全是新进程的映射表,固然是可以,但效率太低了!!!进程的切换其实是秒级亚秒级的,地址的虚实转换是何等的频繁啊,怎么会这么现实呢,真实的情况是TLB中有很多很多其他进程占用的物理内存的记录还在,当然他们对物理内存的使用权也还在。所以当应用程序 new了10M内存以为是属于自己的时候,其实在内核层面根本就不属于你,还是别人在用,只有你用了1M的那一瞬间真正1M物理内存才属于你,而且当你的进程被其他进程切换后,很大可能你用的那1M也已经不在物理内存中了,已经被置换到硬盘上了。明白了吗?只关注应用开发的同学当然可以说这关我鸟事,给我的感觉有就行了,但想熟悉内核的同学就必须要明白,这是每分每秒都在发生的事情。

最后一个函数留给大家,asid是如何分配的?

/* allocate and free asid */
status_t OsAllocAsid(UINT32 *asid)
{
    UINT32 flags;
    LOS_SpinLockSave(&g_cpuAsidLock, &flags);
    UINT32 firstZeroBit = LOS_BitmapFfz(g_asidPool, 1UL << MMU_ARM_ASID_BITS);
    if (firstZeroBit >= 0 && firstZeroBit < (1UL << MMU_ARM_ASID_BITS)) {
        LOS_BitmapSetNBits(g_asidPool, firstZeroBit, 1);
        *asid = firstZeroBit;
        LOS_SpinUnlockRestore(&g_cpuAsidLock, flags);
        return LOS_OK;
    }

    LOS_SpinUnlockRestore(&g_cpuAsidLock, flags);
    return firstZeroBit;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

百文说内核 | 抓住主脉络

  • 百文相当于摸出内核的肌肉和器官系统,让人开始丰满有立体感,因是直接从注释源码起步,在加注释过程中,每每有心得处就整理,慢慢形成了以下文章。内容立足源码,常以生活场景打比方尽可能多的将内核知识点置入某种场景,具有画面感,容易理解记忆。说别人能听得懂的话很重要! 百篇博客绝不是百度教条式的在说一堆诘屈聱牙的概念,那没什么意思。更希望让内核变得栩栩如生,倍感亲切。
  • 与代码需不断debug一样,文章内容会存在不少错漏之处,请多包涵,但会反复修正,持续更新,v**.xx 代表文章序号和修改的次数,精雕细琢,言简意赅,力求打造精品内容。
  • 百文在 < 鸿蒙研究站 | 开源中国 | 博客园 | 51cto | csdn | 知乎 | 掘金 > 站点发布,百篇博客系列目录如下。

按功能模块:

基础知识 进程管理 任务管理 内存管理
双向链表
内核概念
源码结构
地址空间
计时单位
优雅的宏
钩子框架
位图管理
POSIX
main函数
调度故事
进程控制块
进程空间
线性区
红黑树
进程管理
Fork进程
进程回收
Shell编辑
Shell解析
任务控制块
并发并行
就绪队列
调度机制
任务管理
用栈方式
软件定时器
控制台
远程登录
协议栈
内存规则
物理内存
内存概念
虚实映射
页表管理
静态分配
TLFS算法
内存池管理
原子操作
圆整对齐
通讯机制 文件系统 硬件架构 内核汇编
通讯总览
自旋锁
互斥锁
快锁使用
快锁实现
读写锁
信号量
事件机制
信号生产
信号消费
消息队列
消息封装
消息映射
共享内存
文件概念
文件故事
索引节点
VFS
文件句柄
根文件系统
挂载机制
管道文件
文件映射
写时拷贝
芯片模式
ARM架构
指令集
协处理器
工作模式
寄存器
多核管理
中断概念
中断管理
编码方式
汇编基础
汇编传参
链接脚本
内核启动
进程切换
任务切换
中断切换
异常接管
缺页中断
编译运行 调测工具
编译过程
编译构建
GN语法
忍者无敌
ELF格式
ELF解析
静态链接
重定位
动态链接
进程映像
应用启动
系统调用
VDSO
模块监控
日志跟踪
系统安全
测试用例

百万注源码 | 处处扣细节

  • 百万汉字注解内核目的是要看清楚其毛细血管,细胞结构,等于在拿放大镜看内核。内核并不神秘,带着问题去源码中找答案是很容易上瘾的,你会发现很多文章对一些问题的解读是错误的,或者说不深刻难以自圆其说,你会慢慢形成自己新的解读,而新的解读又会碰到新的问题,如此层层递进,滚滚向前,拿着放大镜根本不愿意放手。

  • < gitee | github | coding | gitcode > 四大码仓推送 | 同步官方源码。

关注不迷路 | 代码即人生

期间不断得到小伙伴的支持,有学生,有职场新人,也有老江湖,在此一并感谢,大家的支持是前进的动力。尤其每次收到学生的赞助很感慨,后生可敬。 >> 查看捐助名单

据说喜欢 点赞 + 分享 的,后来都成了大神。😃