About 10 min

子曰:“譬如为山,未成一篑,止,吾止也;譬如平地,虽覆一篑,进,吾往也。” 《论语》:子罕篇

百篇博客分析.本篇为: (时间管理篇) | 内核基本时间单位是谁

下载 >> 离线文档.鸿蒙内核源码分析(百篇博客分析.挖透鸿蒙内核).pdf

基础工具相关篇为:

本篇说清楚时间概念

读本篇之前建议先读 v08.xx 鸿蒙内核源码分析(总目录) 其他篇.

时间概念太重要了,在鸿蒙内核又是如何管理和使用时间的呢?

时间管理以系统时钟 g_sysClock 为基础,给应用程序提供所有和时间有关的服务。

  • 用户以秒、毫秒为单位计时.
  • 操作系统以Tick为单位计时,这个认识很重要. 每秒的tick大小很大程度上决定了内核调度的次数多少.
  • 当用户需要对系统进行操作时,例如任务挂起、延时等,此时需要时间管理模块对Tick和秒/毫秒进行转换。

熟悉两个概念:

  • Cycle(周期):系统最小的计时单位。Cycle的时长由系统主时钟频率决定,系统主时钟频率就是每秒钟的Cycle数。
  • Tick(节拍):Tick是操作系统的基本时间单位,由用户配置的每秒Tick数决定,可大可小.

怎么去理解他们之间的关系呢?看几个宏定义就清楚了.

#ifndef OS_SYS_CLOCK	//HZ:是每秒中的周期性变动重复次数的计量
#define OS_SYS_CLOCK (get_bus_clk()) //系统主时钟频率 例如:50000000 即20纳秒震动一次
#endif
#ifndef LOSCFG_BASE_CORE_TICK_PER_SECOND
#define LOSCFG_BASE_CORE_TICK_PER_SECOND 100 //每秒Tick数,意味着正常情况下每秒100次检查
#endif
#define OS_CYCLE_PER_TICK (g_sysClock / LOSCFG_BASE_CORE_TICK_PER_SECOND) //每个tick多少机器周期
1
2
3
4
5
6
7

时钟周期(振荡周期)

在鸿蒙g_sysClock表示时钟周期,是CPU的赫兹,也就是上面说的Cycle,这是固定不变的,由硬件晶振的频率决定的. OsMain是内核运行的第一个C函数,首个子函数就是 osRegister,完成对g_sysClock的赋值

LITE_OS_SEC_TEXT_INIT VOID osRegister(VOID)
{
    g_sysClock = OS_SYS_CLOCK; //获取CPU HZ 
    g_tickPerSecond =  LOSCFG_BASE_CORE_TICK_PER_SECOND;//每秒节拍数 默认100 即一个tick = 10ms
    return;
}
1
2
3
4
5
6

CPU周期也叫(机器周期)

在鸿蒙宏OS_CYCLE_PER_TICK表示机器周期,Tick由用户根据实际情况配置. 例如:主频为1G的CPU,其振荡周期为: 1吉赫 (GHz 109 Hz) = 1 000 000 000 Hz 当Tick为100时,则1 000 000 000/100 = 10000000 ,即一个tick内可产生1千万个CPU周期.CPU就是用这1千万个周期去执行指令的.

指令周期

指令周期是执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期数也不同。 对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。 对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。 通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。

Tick硬中断函数

LITE_OS_SEC_BSS volatile UINT64 g_tickCount[LOSCFG_KERNEL_CORE_NUM] = {0};//tick计数器,系统一旦启动,一直在++, 为防止溢出,这是一个 UINT64 的变量
LITE_OS_SEC_DATA_INIT UINT32 g_sysClock;//系统时钟,是绝大部分部件工作的时钟源,也是其他所有外设的时钟的来源 
LITE_OS_SEC_DATA_INIT UINT32 g_tickPerSecond;//每秒Tick数,鸿蒙默认是每秒100次,即:10ms
LITE_OS_SEC_BSS DOUBLE g_cycle2NsScale;	//周期转纳秒级
/* spinlock for task module */
LITE_OS_SEC_BSS SPIN_LOCK_INIT(g_tickSpin); //节拍器自旋锁
#define TICK_LOCK(state)                       LOS_SpinLockSave(&g_tickSpin, &(state))
/*
 * Description : Tick interruption handler
 *///节拍中断处理函数 ,鸿蒙默认10ms触发一次
LITE_OS_SEC_TEXT VOID OsTickHandler(VOID)
{
    UINT32 intSave;
    TICK_LOCK(intSave);
    g_tickCount[ArchCurrCpuid()]++;//当前CPU核计数器
    TICK_UNLOCK(intSave);
#ifdef LOSCFG_KERNEL_VDSO
    OsUpdateVdsoTimeval();
#endif
#ifdef LOSCFG_KERNEL_TICKLESS
    OsTickIrqFlagSet(OsTicklessFlagGet());
#endif
#if (LOSCFG_BASE_CORE_TICK_HW_TIME == YES)
    HalClockIrqClear(); /* diff from every platform */
#endif
    OsTimesliceCheck();//时间片检查
    OsTaskScan(); /* task timeout scan *///任务扫描
#if (LOSCFG_BASE_CORE_SWTMR == YES)
    OsSwtmrScan();//定时器扫描,看是否有超时的定时器
#endif
}
#ifdef __cplusplus
#if __cplusplus
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

解读

  • g_tickCount记录每个CPU核tick的数组,每次硬中断都触发 OsTickHandler,每个CPU核单独计数.
  • OsTickHandler是内核调度的动力,其中会检查任务时间片是否用完,定时器是否超时.主动delay的任务是否需要被唤醒,其本质是个硬中断,在HalClockInit硬时钟初始化时创建的,具体在硬中断篇中会详细讲解.
  • TICK_LOCK是tick操作的自旋锁,宏原型LOS_SpinLockSave在自旋锁篇中已详细介绍.

功能函数

#define OS_SYS_MS_PER_SECOND   1000			//一秒多少毫秒
//获取自系统启动以来的Tick数
LITE_OS_SEC_TEXT_MINOR UINT64 LOS_TickCountGet(VOID)
{
    UINT32 intSave;
    UINT64 tick;
    /*
     * use core0's tick as system's timeline,
     * the tick needs to be atomic.
     */
    TICK_LOCK(intSave);
    tick = g_tickCount[0];//使用CPU core0作为系统的 tick数
    TICK_UNLOCK(intSave);
    return tick;
}
//每个Tick多少Cycle数
LITE_OS_SEC_TEXT_MINOR UINT32 LOS_CyclePerTickGet(VOID)
{
    return g_sysClock / LOSCFG_BASE_CORE_TICK_PER_SECOND;
}
//毫秒转换成Tick
LITE_OS_SEC_TEXT_MINOR UINT32 LOS_MS2Tick(UINT32 millisec)
{
    if (millisec == OS_MAX_VALUE) {
        return OS_MAX_VALUE;
    }
    return ((UINT64)millisec * LOSCFG_BASE_CORE_TICK_PER_SECOND) / OS_SYS_MS_PER_SECOND;
}
//Tick转化为毫秒
LITE_OS_SEC_TEXT_MINOR UINT32 LOS_Tick2MS(UINT32 tick)
{
    return ((UINT64)tick * OS_SYS_MS_PER_SECOND) / LOSCFG_BASE_CORE_TICK_PER_SECOND;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

说明

  • 在CPU篇中讲过,0号CPU核默认为主核,默认获取自系统启动以来的Tick数使用的是g_tickCount[0]
  • 因每个CPU核的tick是独立计数的,所以g_tickCount中各值是不一样的.
  • 系统的Tick数在关中断的情况下不进行计数,因为OsTickHandler本质是由硬中断触发的,屏蔽硬中断的情况下就不会触发OsTickHandler,自然也就不会有g_tickCount[ArchCurrCpuid()]++的计数,所以系统Tick数不能作为准确时间使用.
  • 追问下,什么情况下硬中断会被屏蔽?

编程示例

前提条件:

  • 使用每秒的Tick数LOSCFG_BASE_CORE_TICK_PER_SECOND的默认值100。
  • 配好OS_SYS_CLOCK系统主时钟频率。

时间转换

VOID Example_TransformTime(VOID)
{
    UINT32 ms;
    UINT32 tick;

    tick = LOS_MS2Tick(10000);    // 10000ms转换为tick
    dprintf("tick = %d \n",tick);
    ms = LOS_Tick2MS(100);        // 100tick转换为ms
    dprintf("ms = %d \n",ms);
}
1
2
3
4
5
6
7
8
9
10

时间转换结果

tick = 1000
ms = 1000
1
2

时间统计和时间延迟

LITE_OS_SEC_TEXT UINT32 LOS_TaskDelay(UINT32 tick);
VOID Example_GetTime(VOID)
{
    UINT32 cyclePerTick;
    UINT64 tickCount;

    cyclePerTick  = LOS_CyclePerTickGet();
    if(0 != cyclePerTick) {
        dprintf("LOS_CyclePerTickGet = %d \n", cyclePerTick);
    }
    tickCount = LOS_TickCountGet();
    if(0 != tickCount) {
        dprintf("LOS_TickCountGet = %d \n"(UINT32)tickCount);
    }
    LOS_TaskDelay(200);//延迟200个tick
    tickCount = LOS_TickCountGet();
    if(0 != tickCount) {
        dprintf("LOS_TickCountGet after delay = %d \n"(UINT32)tickCount);
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

时间统计和时间延迟结果

LOS_CyclePerTickGet = 495000 //取决于CPU的频率
LOS_TickCountGet = 1 //实际情况不一定是1的
LOS_TickCountGet after delay = 201 //实际情况不一定是201,但二者的差距会是200
1
2
3

百篇博客分析.深挖内核地基

  • 给鸿蒙内核源码加注释过程中,整理出以下文章。内容立足源码,常以生活场景打比方尽可能多的将内核知识点置入某种场景,具有画面感,容易理解记忆。说别人能听得懂的话很重要! 百篇博客绝不是百度教条式的在说一堆诘屈聱牙的概念,那没什么意思。更希望让内核变得栩栩如生,倍感亲切.确实有难度,自不量力,但已经出发,回头已是不可能的了。 😛
  • 与代码有bug需不断debug一样,文章和注解内容会存在不少错漏之处,请多包涵,但会反复修正,持续更新,v**.xx 代表文章序号和修改的次数,精雕细琢,言简意赅,力求打造精品内容。

按功能模块:

百万汉字注解.精读内核源码

四大码仓中文注解 . 定期同步官方代码

关注不迷路.代码即人生

QQ群 790015635 | 入群密码 666 | 存放重要文档资料

鸿蒙研究站( weharmonyos ) | 每天死磕一点点,原创不易,欢迎转载,请注明出处。若能支持点赞则更佳,感谢每一份支持。